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1. Introduction

Throughout the history of the additive theory of numbers, the classical ver-
sion of Waring’s problem, and most notably problems involving sums of cubes,
have provided the examples of prime importance for assessing the strength of
novel methods. We will follow this tradition in the present communication.
While our main objective is to present a widely applicable technique, we il-
lustrate the latter solely in the context of sums of cubes, deferring to future
memoirs discussion of the cornucopia of applications stemming from the under-
lying ideas. In advance of a detailed description of these ideas, it is appropriate
first to review the state of the art in the class of examples we have in mind.

Let Rs(n) denote the number of representations of n as the sum of s cubes of
positive integers. It is widely believed that all large integers are represented as
the sum of four cubes of positive integers, and indeed a heuristic application of
the circle method motivates the conjecture that for s ≥ 4, one has the asymptotic
formula

Rs(n) =
Γ( 4

3 )s

Γ( s3 )
Ss(n)n

s
3−1 + o(n

s
3−1), (1.1)

where

Ss(n) =

∞∑
q=1

q∑
a=1

(a,q)=1

(1

q

q∑
r=1

e(ar3/q)
)s
e(−an/q),

and e(z) = exp(2πiz). It is known that the singular series Ss(n) satisfies
Ss(n) � 1 for s ≥ 4 (see Theorem 4.5 of Vaughan [17]). Consequently, the
validity of the formula (1.1) would imply that all large natural numbers are
indeed the sum of four positive integral cubes.

The formula (1.1) has been established for s ≥ 9 by Hardy and Littlewood
[11], and by Vaughan [14] in the additional case s = 8. Although no such
asymptotic formula is known for s ≤ 7, it does at least follow from work of
Vaughan [16] that R7(n)� n4/3, which is the order of magnitude predicted by
(1.1) (this conclusion improves on earlier work of Linnik [13], Watson [19], and
Vaughan [14]). In situations where fewer cubes are employed in the represen-
tation, one must be content with rather weaker results. When s is a natural
number, denote by Es(N) the number of natural numbers not exceeding N
which are not the sum of s cubes of positive integers. Then Davenport [8], in
the first noteworthy contribution concerning sums of four cubes, established that
E4(N) � N29/30+ε, showing in particular that almost all natural numbers are
the sum of four positive integral cubes. The exponent 29/30 has subsequently
been reduced, and it is now known that when ε is a sufficiently small positive
number, then one has

E4(N)� N37/42−ε (1.2)

(this is a consequence of work of Brüdern [2] and Wooley [22]). The work of
Vaughan [14] alluded to above, moreover, shows that the formula (1.1) holds
when s = 4, for almost all n. The potential for more refined results along the
lines of Davenport’s theorem has recently received further attention, with work
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of Brüdern and Watt [7] and Kawada [12] concerning sums of four cubes in short
intervals.

Although for sums of five or six cubes of non-negative integers results analo-
gous to Davenport’s theorem may be established through similar methods, one
would anticipate that still stronger conclusions should be accessible given the ad-
ditional variables available. This area remains, however, undeservedly neglected
in the literature. In this context we remark that by combining use of Weyl’s
inequality for the additional cubic exponential sums with the classical approach
leading to the estimate (1.2), one routinely obtains bounds very slightly sharper
than

E5(N)� N5/7, E6(N)� N23/42. (1.3)

As is evident from (1.3), these classical estimates fail to show even that the
majority of integer squares are represented as the sum of six positive cubes.
Nevertheless, as a consequence of the methods developed within this paper, it is
possible to show that almost all values of a quadratic polynomial are the sum of
six cubes, with an explicit estimate for the size of the exceptional set. In order
to state our result in a precise form, it is convenient henceforth to describe a
polynomial φ ∈ Q[t] as being an integral polynomial if, whenever the parameter
t is an integer, then the value φ(t) is also an integer. When φ(t) is such a
polynomial, denote by Eφ(N) the number of integers n with 1 ≤ n ≤ N for
which φ(n) is not the sum of six cubes of positive integers.

Theorem 1.1. Let φ be an integral quadratic polynomial with positive lead-
ing coefficient. Then one has Eφ(N)�φ N

19/28.

When the quadratic polynomial is replaced by a cubic polynomial, it is
still possible to obtain a similar conclusion, but with a weaker estimate for the
number of exceptions.

Theorem 1.2. Let Φ be an integral cubic polynomial with positive leading
coefficient. Then one has EΦ(N)�Φ N255/274.

A trivial variant of the arguments used to establish Theorem 1.2 shows that
when N is a positive integer, then for almost all integers t with 1 ≤ t ≤ N1/3,
one has that N − t3 is the sum of six positive integral cubes. Thus we have
the curious conclusion that not only does one have that R7(N) > 0 for all large
integers N , but also that one can almost prescribe the value of one of the seven
cubes used to represent N .

Our methods offer great flexibility in their application to the study of ex-
ceptional sets in additive number theory. In principle, the proofs of the two
theorems above might be regarded as providing a model for most applications
of our method. It therefore seems appropriate to indulge in some rather abstract
discussion concerning our methods, and in particular to describe their merits
relative to classical approaches involving Bessel’s inequality.
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We are interested in additive representations of integers. Thus, given a
positive integer n and sets A1, . . . ,As of positive integers, we investigate the
number r(n) of representations of n in the shape

n = a1 + a2 + . . .+ as (1.4)

with ai ∈ Ai (1 ≤ i ≤ s). When B ⊆ N we define EB(X) to be the number
of integers n ∈ [1, X] ∩ B having no representation in the shape (1.4). There
are many circumstances in which for some fixed s, and an interesting choice
of A1, . . . ,As, one is able to show that almost all positive integers n possess a
representation in the form (1.4), whence

EN(X) = o(X). (1.5)

If, on the other hand, one is able to show that for some thin set B, such as the
sequence of squares, one has

EB(X) = o(card (B ∩ [1, X])),

then one can reasonably assert that more refined information is being provided
concerning the distribution of integers represented in the form (1.4). Such prob-
lems form the backbone of this series of papers.

It is informative to describe the classical approach to estimating EN(X) in
order that its limitations be evident. Define the generating functions

fi(α) =
∑

x∈Ai∩[1,X]

e(αx) (1 ≤ i ≤ s).

Also, define the mean value rC(n) relative to a measurable set C ⊆ [0, 1] by

rC(n) =

∫
C

f1(α) . . . fs(α)e(−αn) dα. (1.6)

Then by orthogonality one has r(n) = r[0,1](n). The first idea in the classical
approach is to use the Hardy-Littlewood method to estimate r(n). Thus one
divides the unit interval into complementary sets M and m, on the first of which
one hopes to provide asymptotic formulae for the fi(α), and on the second
we aim to show that the generating functions are on average suitably small.
Under favourable conditions one is able to show that for 1

2X < n ≤ X one has
rM(n) � Υ(X), where

Υ(X) = X−1
s∏
i=1

card (Ai ∩ [1, X]). (1.7)

Meanwhile, an application of Bessel’s inequality reveals that∑
n∈Z
|rm(n)|2 ≤

∫
m

|f1(α) . . . fs(α)|2 dα.
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Once again under suitable conditions, one is able to show that the latter ex-
pression is of order strictly smaller than XΥ(X)2. On recalling (1.6) and (1.7),
therefore, we find that∑

1
2X<n≤X

∣∣∣r(n)− rM(n)

rM(n)

∣∣∣2 � Υ(X)−2
∑
n

|rm(n)|2 = o(X). (1.8)

On noting that the summands on the left hand side of (1.8) are equal to 1
whenever r(n) = 0, and otherwise are non-negative, we conclude that the right
hand side of (1.8) provides an upper bound for EN(X)−EN( 1

2X). By summing
over dyadic intervals, it is therefore evident how, in principle, one may establish
a result of the type (1.5).

Although successful in investigations concerning exceptional sets of the type
EN(X), the above method fails to provide strong conclusions for exceptional
sets EB(X) when B is a thin sequence. The difficulty is that Bessel’s inequality
fails to exploit the size of the set B, or indeed its arithmetic properties, and thus
the “trivial” estimate arising from the above method may be far larger than the
obvious upper bound card (B ∩ [1, X]) for EB(X).

In this paper we investigate the “sequence of exceptions” directly. Define
E to be the set of integers n ∈ B having no representation in the shape (1.4).
Then by orthogonality it follows from (1.4) that

∑
n∈E

1
2X<n≤X

∫ 1

0

f1(α) . . . fs(α)e(−αn) dα = 0. (1.9)

Write
K(α) =

∑
n∈E

1
2X<n≤X

e(αn), (1.10)

and note that under the conditions implicit in the classical argument above, one
has ∑

n∈E
1
2X<n≤X

∫
M

f1(α) . . . fs(α)e(−αn) dα� Υ(X)card (E ∩ ( 1
2X,X]). (1.11)

But from (1.9) and (1.10) it follows that∑
n∈E

1
2X<n≤X

∫
M

f1(α) . . . fs(α)e(−αn) dα = −
∫
m

f1(α) . . . fs(α)K(−α) dα,

whence by (1.11),

EB(X)− EB( 1
2X)� Υ(X)−1

∫
m

|f1(α) . . . fs(α)K(α)| dα. (1.12)
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In this way, the conclusion of the classical treatment may be recovered by ap-
plying Schwarz’s inequality to the integral on the right hand side of (1.12), since
by orthogonality,∫

m

|f1(α) . . . fs(α)K(α)| dα

≤
(∫ 1

0

|K(α)|2 dα
) 1

2
(∫

m

|f1(α) . . . fs(α)|2 dα
) 1

2

≤ (EB(X)− EB( 1
2X))

1
2

(∫
m

|f1(α) . . . fs(α)|2 dα
) 1

2

.

However, the formulation (1.12) offers additional flexibility over the classical
treatment whenever the set B possesses useful arithmetic properties. For ex-
ample, if B is the set of integral squares, then the fourth moment of K(α) may
be estimated non-trivially, and then the upper bound (1.12) may become effec-
tive via an application of Hölder’s inequality. This is essentially the strategy
adopted in the proof of Theorem 1.1. To be specific in the case of squares under
consideration, a straightforward counting argument shows that∫ 1

0

|K(α)|4 dα� Xε(EB(X)− EB( 1
2X))2,

and (1.12) then yields, via Hölder’s inequality,

EB(X)− EB( 1
2X)� XεΥ(X)−2

(∫
m

|f1(α) . . . fs(α)| 43 dα
) 3

2

.

There are numerous alternatives to the latter approach which vary in utility
according to the mean value estimates available. It may be useful to consider
mixed mean values of the shape∫ 1

0

|K(α)fi1(α) . . . fit(α)|2 dα,

wherein the exponential sum K(α) may, if desired, be replaced by the complete
sum ∑

n≤X
n∈B

e(αn),

by considering the underlying diophantine equation. A very successful applica-
tion of this mixed mean value idea is to problems involving mixed powers, as
will be demonstrated in a sequel to this paper [6]. Moreover, it is possible to
incorporate efficient differencing into this approach, as will be evident from our
proof of Theorem 1.2.

There is an alternative, more classical approach to these problems which we
mention before moving on, and this approach is the one exploited by earlier
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writers. One can make use of relation (1.8), but now expanding the central
expression in (1.8) to obtain for a general sequence B in place of N,∑

n∈B
1
2X<n≤X

∣∣∣r(n)− rM(n)

rM(n)

∣∣∣2 � Υ(X)−2I(X),

where

I(X) =

∫
m

∫
m

f1(α)f1(−β) . . . fs(α)fs(−β)
∑
n∈B

1
2X<n≤X

e((β−α)n) dα dβ. (1.13)

As an advantage over our approach sketched above, an exponential sum over
all elements of B in an interval occurs (a classical Weyl sum), but the disad-
vantages seem almost always to outweigh this meagre bonus. As exhibited in
(1.12), our approach essentially yields a full exponential sum corresponding to
the exceptional set in each mean value, whereas in (1.13) this exponential sum
arises only once between two mean values, and hence has only half the impact
on the ensuing analysis. This makes our results much harder to obtain, if not
inaccessible, by the classical approach.

The flexibility and scope of the main method having been stressed in the
preceding paragraphs, we end these introductory comments with the remark
that further twists and turns may be introduced into the central technique. Such
variants we intend to explore in forthcoming articles in this series. For example,
one may investigate even k-th powers representable by sums of two primes,
and establish an unconditional estimate for the corresponding exceptional set
which is comparable to what was known hitherto under the assumption of the
extended Riemann hypothesis for Dirichlet L-functions (see [3]). One can also
modify the meaning of “exception”. The general discussion above remains valid
if the counting performed by EB(N) refers to properties other than that the
integer n is not representable in the shape (1.4). To be more specific in the
framework of Waring’s problem for cubes, one may ask whether the asymptotic
formula (1.1) holds for almost all n when n varies over the values of a quadratic
polynomial. This is indeed the case when s = 6.

Theorem 1.3. Let φ denote an integral quadratic polynomial, and let Dφ(N)
denote the number of integers n with 1 ≤ n ≤ N for which the asymptotic
formula (1.1) fails for R6(φ(n)). Then Dφ(N)� N/ logN .

We shall not prove this here but refer to another forthcoming article in
this series [4] where amongst other things a stronger version of Theorem 1.3
will be presented. Finally, let it suffice to mention that there is also a variant
of our methods which allows one to conclude, sometimes, that many (but not
necessarily almost all) values of a thin sequence have a representation in a certain
form. Limitations of space do not permit a more precise description of this and
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other variants, and we refer the interested reader to other articles in this series
[5, 6].

Notation. Throughout, the letters ε and η will denote sufficiently small
positive numbers. We take P to be the basic parameter, a large real number
depending at most on ε, η, and any coefficients of implicit polynomials if nec-
essary. We use � and � to denote Vinogradov’s well-known notation, implicit
constants depending at most on ε, η and implicit polynomials. Sometimes we
make use of vector notation. For example, the expression (c1, . . . , ct) is abbre-
viated to c. Summations start at 1 unless indicated otherwise. In an effort to
simplify our analysis, we adopt the following convention concerning the param-
eter ε. Whenever ε appears in a statement, we assert that for each ε > 0 the
statement holds for sufficiently large values of the main parameter. Note that
the “value” of ε may consequently change from statement to statement, and
hence also the dependence of implicit constants on ε.

2. Exceptional sets for six cubes: the major arcs

Our treatments of the exceptional sets arising from the representation of
quadratic and cubic polynomials as sums of six cubes depend for their success
on minor arc estimates of Brüdern [2]. Although the generating function cor-
responding to the six underlying cubes differs between the quadratic and cubic
cases, there are sufficiently many common features that, at least so far as the
major arcs are concerned, an essentially unified treatment is possible. The latter
is the object of the present section.

Motivated by the notational conventions of Brüdern [2], we make the follow-
ing definitions. We take P to be a large real number, write η for a sufficiently
small positive number depending at most on ε, and consider a real number R
with P η/2 < R ≤ P η. We write

Q = P 6/7, Y = P 1/7,

and define the generating functions

fp(α) =
∑

P<x≤2P
p-x

e(αx3), g(α) =
∑

Q<y≤2Q

e(αy3), h(α) =
∑

z∈A(Q,R)

e(αz3),

(2.1)
where A(Q,R) = {1 ≤ z ≤ Q : p|z ⇒ p ≤ R}. As a convenient substitute for
the generating function central to the treatment of Brüdern [2], we define also

F(α) =
∑

Y <p≤2Y
p≡2 (mod 3)

fp(α)g(αp3)h(αp3)2, (2.2)
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where the summation is over prime numbers. Finally, we define

f(α) =
∑

P<x≤2P

e(αx3), t(α) =
∑

x∈A(P,R)

e(αx3), (2.3)

and write
S2(α) = F(α)f(α)t(α), S3(α) = F(α)t(α)2. (2.4)

We remark that our proofs of Theorems 1.1 and 1.2 depend, respectively, on the
use of the generating functions S2(α) and S3(α).

Next we define the major arcs central to the discussion of the present section.
We write L = (logP )1/100, and define N to be the union of the intervals

N(q, a) = {α ∈ [0, 1] : |qα− a| ≤ LP−3}

with 0 ≤ a ≤ q ≤ L and (a, q) = 1. It is convenient at this stage to discuss the
approximants to various generating functions on N. We define

S(q, a) =

q∑
r=1

e(ar3/q), S(q, a, p) = S(q, a)− p−1S(q, ap3). (2.5)

Notice that for 1 ≤ q ≤ L and p > Y one has p - q, and hence by a change
variables one obtains

S(q, ap3) = S(q, a). (2.6)

If we now define the multiplicative function κ(q) on prime powers πl (l ∈ N) by
means of the equations

κ(π3l) = π−l, κ(π3l+1) = 2π−l−
1
2 , κ(π3l+2) = π−l−1, (2.7)

then it follows from Lemmata 4.3–4.5 of Vaughan [17] that whenever p ≡ 2
(mod 3) is a prime, and q ∈ N and a ∈ Z satisfy (q, a) = 1, one has

q−1|S(q, a)| � κ(q), q−1|S(q, a, p)| � κ(q). (2.8)

We note that the implicit constants in (2.8) are bounded above by 2 whenever
9 - q. We also define

v(β) =

∫ 2P

P

e(βγ3) dγ, v1(β) =

∫ P

0

e(βγ3) dγ,

w(β) =

∫ 2Q

Q

e(βγ3) dγ, w1(β) =

∫ Q

0

e(βγ3) dγ.

Next we define the functions f∗p , g
∗
p , t
∗, f∗ and h∗p for α ∈ [0, 1] by taking

f∗p (α) = q−1S(q, a, p)v(α− a/q), g∗p(α) = q−1S(q, ap3)w(p3(α− a/q)), (2.9)

t∗(α) = cηq
−1S(q, a)v1(α− a/q), h∗p(α) = cηq

−1S(q, ap3)w1(p3(α− a/q)),
(2.10)
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f∗(α) = q−1S(q, a)v(α− a/q), (2.11)

when α ∈ N(q, a) ⊂ N, and by taking each of these functions to be zero other-
wise. Here we have written cη for ρ(η−1), where ρ(t) is the Dickman function
(see, for example, §12.1 of Vaughan [17]). It suffices for our purposes to note
that when η > 0 one has cη > 0. It follows from Theorem 4.1 of Vaughan [17]
that for any α ∈ R, a ∈ Z, and q ∈ N, and for any prime p ≤ 2Y , one has

fp(α)− q−1S(q, a, p)v(α− a/q)� q
1
2 +ε(1 + P 3|α− a/q|) 1

2 ,

g(αp3)− q−1S(q, ap3)w(p3(α− a/q))� q
1
2 +ε(1 + P 3|α− a/q|) 1

2 ,

and
f(α)− q−1S(q, a)v(α− a/q)� q

1
2 +ε(1 + P 3|α− a/q|) 1

2 ,

whence for α ∈ N one has

fp(α)− f∗p (α)� L
1
2 +ε, g(αp3)− g∗p(α)� L

1
2 +ε, f(α)− f∗(α)� L

1
2 +ε.
(2.12)

Further, one may deduce from Lemma 8.5 of Wooley [20] (see also Lemma 5.4
of Vaughan [15] for a related conclusion) that for α ∈ N one has

t(α)− t∗(α)� P (logP )−
1
4 , h(αp3)− h∗p(α)� Q(logP )−

1
4 . (2.13)

Finally, by partial integration one readily confirms that the bounds

v(β)� P (1 + P 3|β|)−1, w(β)� Q(1 +Q3|β|)−1, (2.14)

v1(β)� P (1 + P 3|β|)− 1
3 , w1(β)� Q(1 +Q3|β|)− 1

3 , (2.15)

hold uniformly for β ∈ R.

Lemma 2.1. When j = 2 or 3, one has uniformly for 4P 3 ≤ m ≤ 64P 3 the
estimate ∫

N

Sj(α)e(−αm) dα�η Y Q
3(logP )−1.

Proof. The lower bound recorded in the lemma is a simple consequence of
standard endgame technique in the circle method. We will be economical in our
presentation of details, though with later applications in mind we work harder
than is necessary for our immediate needs. We begin by writing

S∗j (α) =
∑

Y <p≤2Y
p≡2 (mod 3)

f∗p (α)g∗p(α)h∗p(α)2t∗(α)j−1f∗(α)3−j (j = 2, 3). (2.16)

Then it follows from (2.12) and (2.13) that for α ∈ N one has

Sj(α)− S∗j (α)� Y P 3Q3(logP )−5/4.
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On recalling that the measure of N is O(L2P−3), we deduce that∫
N

Sj(α)e(−αm) dα−
∫
N

S∗j (α)e(−αm) dα� Y Q3(logP )−6/5. (2.17)

Next, on combining (2.16), (2.9)–(2.11), (2.5) and (2.6), we obtain∫
N

S∗j (α)e(−αm) dα =
∑
q≤L

A(q,m)I∗j (m;L/(qP 3)) (2.18)

where

A(q,m) =

q∑
a=1

(a,q)=1

q−6S(q, a)6e(−am/q) (2.19)

and, for each positive number Z,

I∗j (m;Z) = cj+1
η

∑
Y <p≤2Y

p≡2 (mod 3)

(
1− 1

p

)∫ Z

−Z
Vp(β)e(−βm) dβ, (2.20)

where
Vp(β) = v(β)4−jv1(β)j−1w(p3β)w1(p3β)2.

On writing
Ij(m) = lim

Z→∞
I∗j (m;Z)

we find from (2.14), (2.15) and (2.20) that for 0 < ν < 1
2 one has

Ij(m)− I∗j (m;L/(qP 3))� (q/L)νQ3Y (logP )−1.

Then by (2.7), (2.8) and (2.19), we deduce that∑
q≤L

|A(q,m)(Ij(m)− I∗j (m;L/(qP 3))| � Q3Y L−ν(logP )−1
∏
p

(1 + 64pν−2)

� Q3Y (logP )−1−ν/100. (2.21)

Moreover, also by (2.7), (2.8) and (2.19), we have

∑
q>L

|A(q,m)| �
∞∑
q=1

(q/L)ν |A(q,m)| � L−ν . (2.22)

Finally, by (2.14), (2.15) and (2.20) one finds that

Ij(m)� Q3Y (logP )−1. (2.23)

On combining (2.17), (2.18) and (2.21)–(2.23), we therefore conclude that∫
N

Sj(α)e(−αm) dα = S6(m)Ij(m) +O(Q3Y (logP )−1−ν/100), (2.24)
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where S6(m) is the singular series defined in connection with (1.1).
In order to complete the proof of the lemma we have only to note that a

standard application of Fourier’s integral formula (see, for example, Davenport
[9]) shows that

Ij(m)� Q3Y (logP )−1

for 4P 3 ≤ m ≤ 64P 3, and that Theorem 4.5 of Vaughan [17] demonstrates that
S6(m)� 1 uniformly in m. Consequently, the desired conclusion follows from
(2.24).

Equipped with Lemma 2.1, it is now a simple matter to describe our plan of
attack on the theorems. Let φj ∈ Q[t] be an integral polynomial with positive
leading coefficient of degree j, where j = 2 or 3. We take

6P 3 = φj(N) (2.25)

and denote by Zj(N) the set of integers n with N < n ≤ 2N for which the
diophantine equation

φj(n) = x3
1 + x3

2 + . . .+ x3
6

has no solution in positive integers xi (1 ≤ i ≤ 6). Write

Kj(α) =
∑

n∈Zj(N)

e(−αφj(n)). (2.26)

Then it follows from the definition of Zj(N) that∫ 1

0

Sj(α)Kj(α) dα = 0. (2.27)

Next write n = [0, 1] \ N. Then, on noting (2.25), it follows from Lemma 2.1
and (2.26) that∫

N

Sj(α)Kj(α) dα� card (Zj(N))Y Q3(logP )−1,

whence by (2.27) we necessarily have∣∣∣ ∫
n

Sj(α)Kj(α) dα
∣∣∣� card (Zj(N))Y Q3(logP )−1. (2.28)

Our plan, which we execute in the next two sections, is to provide an upper
bound for the integral on the left hand side of (2.28). As is apparent, an up-
per bound for card (Zj(N)) will follow immediately, and this will lead to the
conclusions of Theorems 1.1 and 1.2.
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3. Values of quadratic polynomials which are not sums of six cubes

In this section we complete the proof of Theorem 1.1. Large parts of the
analysis of this section will be employed also in the next section wherein The-
orem 1.2 will be established. We begin with a preparatory investigation of the
block of four cubes lurking within the function F(α). As might be expected, our
minor arc treatment rests on a good estimate for the sixth moment of suitable
cubic exponential sums.

Lemma 3.1. Let U(X) denote the number of solutions of the diophantine
equation

x3
1 − x3

2 = y3
1 + y3

2 − y3
3 − y3

4 ,

with 1 ≤ xi ≤ 2X (i = 1, 2) and yj ∈ A(X,Xη) (1 ≤ j ≤ 4). Then provided
that η is sufficiently small, one has

U(X)� X
13
4 −2η.

Proof. The conclusion of the lemma follows from Theorem 1.2 of Wooley
[22].

Henceforth we take η to be a fixed positive number sufficiently small in the
context of Lemma 3.1 and our ensuing argument. As an immediate application
of Lemma 3.1, we note that by considering the underlying diophantine equations,
it follows from (2.1) and (2.3) that∫ 1

0

|f(α)2t(α)4| dα� P
13
4 −2η,

∫ 1

0

|g(α)2h(α)4| dα� Q
13
4 −2η. (3.1)

The first of two lemmata concerning the block of exponential sums F(α)
is a simple modification of a conclusion contained in Brüdern [2], whereas the
second is genuinely new. In order to describe these results we must first set up
a Hardy-Littlewood dissection. When X is a real number with 1 ≤ X ≤ P , we
define the set of major arcs M(X) to be the union of the intervals

M(q, a) = {α ∈ [0, 1] : |qα− a| ≤ XP−3}

with 0 ≤ a ≤ q ≤ X and (a, q) = 1. We define m(X) = [0, 1] \M(X) and for
brevity write also

M = M(P 3/4), m = m(P 3/4).

We first explain how the work of Brüdern [2] leads to the estimate∫
m(P )

|F(α)|2 dα� Y 2Q6P−19/14, (3.2)

where F(α) is defined as in (2.2). The estimate (3.2) is essentially contained
in the proof of Proposition 1 of Brüdern [2], but some comments are required
in order that the reader is able easily to follow the necessary route. The mean

12



value on the left hand side of (3.2) occurs explicitly in equation (3.2) of Brüdern
[2], and is subsequently estimated therein to the precision claimed in (3.2), save
for an extraneous factor of P ε. We note that the sequence A used to define the
exponential sum h(α) in Brüdern [2] differs from our set A(Q,R). However, the
argument of Brüdern [2] does not depend on the specific shape of A, and indeed
it is only the mean value estimate (3.4) of Brüdern [2] which is vital, and such is
available to us in the present context from (3.1). Moreover, the latter estimate
is even a little stronger than the corresponding estimate (3.4) of Brüdern [2],
and this additional strength may be carried through the argument to remove the
offensive factor P ε implicit in Brüdern [2], equation (3.2), to which we alluded
earlier.

Now define the functions f∗p (α) and g∗p(α) via (2.9) for α ∈M(q, a) ⊂M(P ),
and define these functions to be zero otherwise. Also write

F1(α) =
∑

Y <p≤2Y
p≡2 (mod 3)

f∗p (α)g∗p(α)h(αp3)2. (3.3)

Then an inspection of the proofs of inequalities (4.6) and (4.7) of Brüdern [2]
reveals that ∫

M(P )

|F(α)−F1(α)|2 dα� Y 2Q6P−19/14. (3.4)

Here again it is necessary to observe that the arguments of Brüdern [2] make use
of the cubes underlying the exponential sum h(αp3) only through upper bounds
on the number of solutions of auxiliary diophantine equations, and consequently
our alternative choice for A does not affect the argument.

Finally, we inspect the proof of equation (4.10) of Brüdern [2], but replace

the choice X = P
4
7−η therein with the new choice X = P

3
4 . The work of §6

of Brüdern [2] then shows that the inequality (4.10) of Brüdern [2] holds with
η = 0, whence we have∫

M(P )\M
|F1(α)|2 dα� Y 2Q6P−19/14.

When combined with (3.2) and (3.4), we may summarise our deliberations thus
far in a convenient form as follows.

Lemma 3.2. One has∫
m

|F(α)|2 dα� Y 2Q6P−19/14

and ∫
M

|F(α)−F1(α)|2 dα� Y 2Q6P−19/14.

Proof. The first estimate follows in the manner indicated above, and the
second is a trivial consequence of (3.4).

13



Our next lemma provides an upper bound for the contribution of F1(α)
arising from the major arcs which is essentially best possible, and this estimate
greatly facilitates our subsequent pruning procedures.

Lemma 3.3. Suppose that X is a real number with 1 ≤ X ≤ Q. Then∫
M(X)

|F1(α)|dα� XεY Q3P−2(log Y )−1.

Proof. Define κ(q) via (2.7). Then, for each prime p ∈ [Y, 2Y ] with p ≡ 2
(mod 3), and for each α ∈ M(q, a) ⊂ M(X), it follows from equation (6.5) of
Brüdern [2] that

f∗p (α)g∗p(α)� κ(q)2PQ(1 + P 3|α− a/q|)−2,

and moreover that when p2|q, one has

f∗p (α)g∗p(α) = 0.

On recalling (3.3), we therefore deduce that∫
M(X)

|F1(α)| dα� PQ
∑
q≤X

κ(q)2
∑

Y <p≤2Y
p2-q

∫ ∞
−∞

q∑
a=1

(a,q)=1

|h(p3(a/q + β))|2

(1 + P 3|β|)2
dβ.

(3.5)
Let cq(h) be Ramanujan’s sum, which we define by

cq(h) =

q∑
a=1

(a,q)=1

e(ah/q).

Then it follows that

q∑
a=1

(a,q)=1

|h(p3(a/q + β))|2 =
∑

x,y∈A(Q,R)

cq(p
3(x3 − y3))e(βp3(x3 − y3)).

The familiar estimate |cq(h)| ≤ (q, h) (noting the convention that (q, 0) = q)
therefore leads from (3.5) to the estimate∫

M(X)

|F1(α)| dα� P−2Q
∑
q≤X

κ(q)2
∑

Y <p≤2Y
p2-q

∑
1≤x,y≤Q

(q, p3(x3 − y3)). (3.6)

When p2 - q, one plainly has

(q, p3(x3 − y3)) ≤ (p, q)(q, x3 − y3).

14



Observe that when q ≤ X, p > Y and X ≤ Y one has (p, q) = 1. Meanwhile,
when X > Y one has log Y � Xε/2. Thus, on applying a familiar estimate for
the divisor function, it follows that whenever 1 ≤ q ≤ X, one has∑

Y <p≤2Y

(p, q)� Y

log Y
+
Xε/2

log Y

∑
p|q

Y <p≤2Y

p� XεY

log Y
. (3.7)

On combining (3.6) and (3.7), we therefore deduce that∫
M(X)

|F1(α)| dα� XεP−2QY (log Y )−1
∑
q≤X

κ(q)2
∑

1≤x,y≤Q

(q, x3 − y3). (3.8)

Next write ρ(d) for the number of solutions of the congruence x3 ≡ y3

(mod d) with 1 ≤ x, y ≤ d. Then, by sorting x and y into residue classes
modulo d, it follows that whenever q ≤ Q,∑

1≤x,y≤Q

(q, x3 − y3) ≤
∑
d|q

d card {1 ≤ x, y ≤ Q : x3 ≡ y3 (mod d)}

≤
∑
d|q

(Q
d

+ 1
)2

dρ(d)� Q2
∑
d|q

ρ(d)

d
. (3.9)

For any natural number r one may write r = r1r
3
3 with r1 cube-free, and this

decomposition is unique. Further, an elementary counting argument shows that
ρ(r)� r1+εr3. Consequently, on recalling (3.9),∑

1≤x,y≤Q

(q, x3 − y3)� Q2qεq3. (3.10)

But in view of (2.7) we have κ(q)� qεq
−1/2
1 q−1

3 , whence∑
q≤X

κ(q)2q3 � Xε/2
∑

q1q33≤X

q−1
1 q−1

3 � Xε.

On recalling (3.8) and (3.10), therefore, the proof of the lemma is complete.

We require a variant of Lemma 3.3 of simpler type in order to complete the
proof of Theorem 1.1.

Lemma 3.4. One has∫
M

|f(α)t(α)|2 dα� P 1+ε.

Proof. When 1 ≤ q ≤ P 3/4 and |qα − a| ≤ P−9/4, it follows from (2.8),
(2.14) together with Theorem 4.1 of Vaughan [17] that

f(α)� κ(q)P (1 + P 3|α− a/q|)−1 + q
1
2 +ε. (3.11)
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Since it follows readily from (2.7) that κ(q)� q−1/2, it is easily confirmed that
the first term on the right hand side of (3.11) always dominates the second.
Consequently,∫
M

|f(α)t(α)|2 dα� P 2
∑

q≤P 3/4

κ(q)2

∫ ∞
−∞

q∑
a=1

(a,q)=1

|t(a/q + β)|2(1 + P 3|β|)−2 dβ,

and a comparison with the expression (3.5) will convince the reader that the
proof of the present lemma may be completed by applying the argument of the
proof of the previous one, mutatis mutandis.

We pause before launching our campaign proper to add a further simple
estimate to our arsenal of mean values. By employing Weyl’s inequality in the
form given by Vaughan [14], Lemma 1, one has

sup
α∈m
|f(α)| � P

3
4 +ε,

and in combination with (3.1) we obtain the estimate∫
m

|f(α)t(α)|4 dα� P
19
4 −η. (3.12)

Our starting point for the proof of Theorem 1.1 is the lower bound (2.28). As
a first step in obtaining a corresponding upper bound we remove the contribution
to the integral on the left hand side of (2.28) arising from the set n ∩M. Note
first that N = M(L), and so n ∩M is contained in the union of the sets

K(X) = M(2X) \M(X),

where we put X = 2lL, and take the union with l ≥ 0 satisfying 2lL ≤ P 3/4.
Next, on recalling (2.7) and (3.11), we find that for X ≤ P 3/4, one has

sup
α∈K(X)

|f(α)| � PX−1/3.

Consequently, on making use of the trivial bound |t(α)| ≤ P , we infer from
Lemma 3.3 that for X ≤ P 3/4 one has∫

K(X)

|F1(α)f(α)t(α)| dα � P 2X−1/3

∫
M(2X)

|F1(α)| dα

� Q3Y X−1/4(log Y )−1.

On summing over the aforementioned values of l, we find that the total contri-
bution arising from the union of the arcs K(2lL) yields the upper bound∫

n∩M
|F1(α)f(α)t(α)| dα� Q3Y L−1/4(log Y )−1. (3.13)
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Next, applying Schwarz’s inequality in combination with Lemmata 3.2 and
3.4, we obtain∫

M

|(F(α)−F1(α))f(α)t(α)| dα

≤
(∫

M

|F(α)−F1(α)|2 dα
) 1

2
(∫

M

|f(α)t(α)|2 dα
) 1

2

� (Y 2Q6P−19/14)
1
2 (P 1+ε)

1
2 � Q3Y P−1/6.

We therefore find from (3.13) and (2.4) that∫
n∩M

|S2(α)| dα� Q3Y L−1/4(log Y )−1,

whence the trivial bound |K2(α)| ≤ cardZ2(N), in combination with (2.28),
reveals that ∫

m

|S2(α)K2(α)| dα� Y Q3(logP )−1cardZ2(N). (3.14)

We provide an upper bound for the mean value on the left hand side of (3.14)
via Hölder’s inequality, obtaining from (2.4) the estimate∫

m

|S2(α)K2(α)| dα ≤ J1/4
(∫

m

|F(α)|2 dα
) 1

2
(∫

m

|f(α)t(α)|4 dα
) 1

4

, (3.15)

where

J =

∫ 1

0

|K2(α)|4 dα.

But on considering the underlying diophantine equation, one finds that J is
equal to the number of solutions of the equation

φ2(n1) + φ2(n2) = φ2(n3) + φ2(n4)

with nj ∈ Z2(N) (1 ≤ j ≤ 4). By completing the square in the quadratic
polynomial φ2(t), one recognises easily that it suffices to bound the number
J0(Z) of solutions of the simpler equation z2

1 + z2
2 = z2

3 + z2
4 , with zi ∈ Z

(1 ≤ i ≤ 4), in which Z is a set of integers of the same cardinality as Z2(N).
On separating diagonal solutions, an elementary estimate for the divisor function
readily shows that

J � P ε(cardZ2(N))2. (3.16)

Then by (3.15), (3.16), Lemma 3.2 and the upper bound (3.12), we derive the
estimate ∫

m

|S2(α)K2(α)| dα� (cardZ2(N))
1
2Y Q3P

57
112−

1
5η. (3.17)

The proof of Theorem 1.1 is now readily completed. On combining (3.14), (3.17)
and (2.25), we obtain

cardZ2(N)� P 57/56 � N19/28,

and the desired conclusion follows by summing over dyadic intervals.
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4. Values of cubic polynomials which are not sums of six cubes

Although the treatment of quadratic polynomials in the previous section
provides many of the tools required in the application of our methods in the
cubic situation, in order to achieve the bound claimed in Theorem 1.2 we require
still more sophisticated weaponry. Much of this section will be devoted to
the proof of a mean value estimate based on efficient differencing with certain
variables restricted to thin sets.

Before describing our differencing lemma we require some additional expo-
nential sums to be defined. We first extend the definition (2.3), writing for each
positive number U ,

t(α;U) =
∑

x∈A(U,R)

e(αx3). (4.1)

We take θ to be a parameter with 0 < θ < 1
3 , to be chosen later, and write

M = P θ, Q1 = PM−1, H = NM−3. (4.2)

Here we recall that in the present circumstance wherein j = 3, the equation
(2.25) ensures that N � P . Finally, we write

G1(α) =
∑

M<m≤MR

∑
h≤N/m3

∑
z∈Z3(N)

z+hm3∈Z3(N)

e(αm−3(φ3(z + hm3)− φ3(z))). (4.3)

Lemma 4.1. For each positive number ε, one has∫ 1

0

|K3(α)2t(α;P )4| dα � P 2+εM2R4cardZ3(N)

+M3+εR3

∫ 1

0

|G1(α)t(α;Q1)4| dα.

Proof. On considering the underlying diophantine equations, an inspection
of the proof of Lemma 2.2 of Wooley [21] reveals that with trivial modifications,
the latter argument establishes the upper bound∫ 1

0

|K3(α)2t(α;P )4| dα� P ε(S1 + PMS2 + (MR)3S3), (4.4)

where

S1 =

∫ 1

0

|K3(α)2t(α;M)4| dα, (4.5)

S2 =

∫ 1

0

|K3(α)2t(α;P )2| dα, (4.6)

and S3 denotes the number of solutions of the diophantine equation

φ3(z1) + w3(u3
1 + u3

2) = φ3(z2) + w3(u3
3 + u3

4), (4.7)
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with
M < w ≤MR, uj ∈ A(Q1, R), (4.8)

z1, z2 ∈ Z3(N), z1 ≡ z2 (mod w3). (4.9)

Observe first that the solutions of (4.7) counted by S3 satisfying z1 = z2,
u1 = u3 and u2 = u4 number

�M(P/M)2cardZ3(N),

whence
(MR)3S3 � P 2M2R3cardZ3(N). (4.10)

Next, on estimating the exponential sum t(α;M) trivially via (4.1), we find from
(4.5) that

S1 ≤M4

∫ 1

0

|K3(α)|2 dα ≤M4cardZ3(N),

by Parseval’s identity, whence by making use of our hypothesis that M3 ≤ P ,
one has

S1 ≤ PMcardZ3(N)� (MR)3S3. (4.11)

Finally, it follows from (4.6) by orthogonality that S2 is equal to the number of
solutions of the diophantine equation

φ3(z1)− φ3(z2) = v3
1 − v3

2 , (4.12)

with z1, z2 ∈ Z3(N) and v1, v2 ∈ A(P,R). The number of such solutions of
(4.12) with z1 = z2 is plainly O(P (cardZ3(N))). Fix a choice of z1, z2 ∈
Z3(N) with z1 6= z2, and consider a solution v1, v2 of (4.12). Since v1 − v2 is
a divisor of the non-zero integer φ3(z1)− φ3(z2), it follows from an elementary
estimate for the divisor function that the number of possible choices for v1− v2

is O(P ε). But given a fixed choice of v1−v2, one finds that v1 +v2 is determined
essentially uniquely by (4.12), whence also v1, v2. Thus we conclude that the
number of solutions of (4.12) counted implicitly by S2 with z1 6= z2 is at most
O(P ε(cardZ3(N))2). Consequently,

S2 � P cardZ3(N) + P ε(cardZ3(N))2 � P 1+εcardZ3(N),

whence by (4.10),

PMS2 � P 2+εM cardZ3(N)� P ε(MR)3S3. (4.13)

On combining (4.4), (4.11) and (4.13) we may conclude thus far that∫ 1

0

|K3(α)2t(α;P )4| dα� P ε(MR)3S3. (4.14)

Next we establish an upper bound for S3. Observe that when z1 and z2 are
elements of Z3(N) satisfying (4.9) and z1 > z2, then one may write z2 = z and
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z1 = z + hw3 with z ∈ Z3(N), 1 ≤ h ≤ N/w3 and M < w ≤ MR. Then, by
isolating the diagonal contribution with z1 = z2 in (4.7), and considering the
underlying diophantine equations, one finds from (4.8) and (4.3) that

S3 � S4 + S5, (4.15)

where

S4 = MR(cardZ3(N))

∫ 1

0

|t(α;Q1)|4 dα (4.16)

and

S5 =

∫ 1

0

|G1(α)t(α;Q1)4| dα. (4.17)

But it follows from Hua’s Lemma (see, for example, Vaughan [17], Lemma 2.5)
that ∫ 1

0

|t(α;Q1)|4 dα� Q2+ε
1 ,

whence by (4.16) one has

S4 � (cardZ3(N))MRQ2+ε
1 . (4.18)

Thus, collecting together (4.14), (4.15), (4.17) and (4.18), and recalling (4.2),
we complete the proof of the lemma.

Our understanding of the behaviour of the exponential sum G1(α) is weak,
since the latter depends heavily on the set Z3(N). We therefore engineer a
metamorphosis which facilitates our subsequent analysis. To be precise at this
stage we must be explicit regarding the polynomial φ3. We write the latter in
the shape

φ3(t) = ∆−1(at3 + bt2 + ct+ d), (4.19)

for suitable integers a, b, c, d,∆. Write also A = 12a∆ and B = 12ac − 4b2.
Further, we define the exponential sums F1(α) and G̃1(α) associated with φ3

by

F1(α) =
∑

M<m≤MR

∑
h≤H

∑
y≤2AN

e(αh(y2 + 3a2h2m6 +B)) (4.20)

and

G̃1(α) =
∑

M<m≤MR

∑
h≤H

∑
z∈Z3(N)

e(αm−3(φ3(z + hm3)− φ3(z))). (4.21)

Finally, we define the mean value

J =

∫ 1

0

|F1(α)G̃1(Aα)t(Aα;Q1)2| dα. (4.22)

Lemma 4.2. One has∫ 1

0

|G1(α)t(α;Q1)4| dα� J 1
2

(∫ 1

0

|t(α;Q1)|6 dα
) 1

2

.
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Proof. By Schwarz’s inequality, one has∫ 1

0

|G1(α)t(α;Q1)4| dα� J
1
2

1

(∫ 1

0

|t(α;Q1)|6 dα
) 1

2

where

J1 =

∫ 1

0

|G1(α)2t(α;Q1)2| dα. (4.23)

It is evident, therefore, that the lemma will follow from the bound J1 � J
which we now prove. Observe first that by (4.19) one has

m−3(φ3(z + hm3)− φ3(z))

=
h

12a∆
((3a(2z + hm3) +2b)2 + 3a2h2m6 + (12ac− 4b2)).

Then on considering the underlying diophantine equation, it follows from (4.23)
that J1 is bounded above by the number of integral solutions of the equation

m−3
1 (φ3(z + h1m

3
1)− φ3(z))− h2

12a∆
(y2 + 3a2h2

2m
6
2 +B) = u3

1 − u3
2,

with
u1, u2 ∈ A(Q1, R), M < m1,m2 ≤MR, z ∈ Z3(N),

1 ≤ h1, h2 ≤ H, 1 ≤ y ≤ 2AN,

and satisfying the property that 12a∆|h2(y2 + 3a2h2
2m

6
2 + B). On recalling

the definitions (4.1), (4.20), (4.21), and considering the underlying diophantine
equation, it therefore follows from orthogonality that

J1 �
∫ 1

0

F1(−α)G̃1(Aα)|t(Aα;Q1)|2 dα,

and the desired conclusion that J1 � J is immediate from (4.22).

We estimate the mean value J by using the Hardy-Littlewood method, but
this will entail some preparation. We define the major arcs P to be the union
of the intervals

P(q, a) = {α ∈ [0, 1] : |qα− a| ≤ NQ−3
1 }

with 0 ≤ a ≤ q ≤ N and (a, q) = 1. We then write p = [0, 1] \ P for the
minor arcs. The analysis of the minor arcs requires several auxiliary mean value
estimates, which we presently discuss.

Lemma 4.3. One has∫ 1

0

|F1(α)|2 dα� N1+εHMR (4.24)
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and ∫ 1

0

|G̃1(α)|2 dα� N εHMR cardZ3(N). (4.25)

Proof. On recalling (4.20) it follows from orthogonality that the mean value
(4.24) is equal to the number of integral solutions of the equation

h1(y2
1 + 3(ah1m

3
1)2 +B) = h2(y2

2 + 3(ah2m
3
2)2 +B), (4.26)

with

M < m1,m2 ≤MR, 1 ≤ h1, h2 ≤ H, 1 ≤ y1, y2 ≤ 2AN. (4.27)

Observe that given a fixed choice of y2, h2,m2 satisfying (4.27), one has

(ah2m
3
2)2 �M6 > |B|,

and thus the right hand side of (4.26) is a non-zero integer l. It follows that there
are at most O(N ε) possible choices for y1, h1,m1 satisfying (4.26) and (4.27).
For h1 is a divisor of l, and an elementary estimate for the divisor function
shows that there are at most O(lε) such. Fix any one such choice, and consider
the equation

u2 + 3v2 =
l

h1
−B.

Familiar estimates for the number of representations of an integer by a binary
quadratic form (see, for example, Estermann [10]) show that the number of
solutions of the latter equation in positive integers u and v is O((l/h1 −B)ε) if
l/h1 − B ≥ 0, and zero otherwise. Our earlier assertion now follows. Thus the
number of solutions of (4.26) satisfying (4.27) is O(N1+εHMR). This completes
the proof of (4.24).

We treat the mean value (4.25) in a similar fashion. On recalling (4.21) and
the argument of the proof of Lemma 4.2, we find that the mean value (4.25) is
bounded above by the number of integral solutions of the equation

h1((3a(2z1 + h1m
3
1) + 2b)2 + 3(ah1m

3
1)2 +B)

= h2((3a(2z2 + h2m
3
2) + 2b)2 + 3(ah2m

3
2)2 +B) (4.28)

with

M < m1,m2 ≤MR, 1 ≤ h1, h2 ≤ H, z1, z2 ∈ Z3(N). (4.29)

Given a fixed choice of z2, h2,m2 satisfying (4.29), it again follows that the right
hand side of (4.28) is a non-zero integer. A comparison between the equations
(4.26) and (4.28) reveals that one may apply the argument of the preceding
paragraph to show that there are at most O(N ε) possible choices for z1, h1,m1

satisfying (4.28) and (4.29). Thus the number of solutions of (4.28) and (4.29)
is

� N εHMR cardZ3(N).
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The estimate (4.25) follows immediately.

One may provide an estimate for the sum F1(α) mirroring bounds for anal-
ogous sums provided by Vaughan [14], [15]. By Cauchy’s inequality, one has

|F1(α)|2 ≤ D(α)E(α), (4.30)

where

D(α) =
∑
h≤H

∣∣∣ ∑
y≤2AN

e(αhy2)
∣∣∣2

and

E(α) =
∑
h≤H

∣∣∣ ∑
M<m≤MR

e(3a2αh3m6)
∣∣∣2. (4.31)

Lemma 4.4. One has

sup
α∈p
|D(α)| � N1+εH.

Moreover, when a ∈ Z, q ∈ N, (a, q) = 1 and α ∈ P(q, a) ⊂ P, one has

D(α)� N2+εH(q +Q3
1|qα− a|)−1.

Proof. The conclusions of the lemma are immediate consequences of the
argument of the proof of Lemma 3.1 of Vaughan [15].

Rather than follow the trail laid down by Vaughan [15] in our analysis of
E(α) we instead make use of mean value estimates which lead to sharper con-
clusions. In this context we define the exponential sum

E∗(α) =
∑
h≤H

∑
M<m2<m1≤MR

e(αh3(m6
1 −m6

2)), (4.32)

and note that by (4.31) one has

E(α)� HMR+ |E∗(3a2α)|. (4.33)

Lemma 4.5. When j = 1 or 2, one has∫ 1

0

|E∗(α)|2
j

dα� P εH2j−j(MR)2j+1−2. (4.34)

Proof. We imitate the well-known proof of Hua’s Lemma, noting that for
any positive integer l, as an easy exercise in estimates for the divisor function,
one has that the number of integral solutions of the equation m6

1 −m6
2 = l is

O(lε).
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Next, in view of (4.32), when j = 1 we find by orthogonality that the integral
on the left hand side of (4.34) is equal to the number I1 of integral solutions of
the equation

h3
1(m6

1 − n6
1) = h3

2(m6
2 − n6

2), (4.35)

with
1 ≤ hi ≤ H, M < ni < mi ≤MR (i = 1, 2). (4.36)

Given a fixed choice of h2,m2, n2 satisfying (4.36), write l = h3
2(m6

2 − n6
2).

Then, for any solution h1,m1, n1 of (4.35) counted by I1, one has that h1 and
m6

1 − n6
1 are each divisors of the positive integer l. On noting our opening

discussion, elementary estimates for the divisor function therefore show that
I1 � P εH(MR)2, which confirms (4.34) when j = 1.

By Cauchy’s inequality, it follows from (4.32) that∫ 1

0

|E∗(α)|4 dα� (MR)2

∫ 1

0

E∗1 (α)|E∗(α)|2 dα,

where

E∗1 (α) =
∑

M<m2<m1≤MR

∣∣∣ ∑
h≤H

e(αh3(m6
1 −m6

2))
∣∣∣2.

On isolating the diagonal contribution, it follows by considering the underlying
diophantine equations that∫ 1

0

|E∗(α)|4 dα� H(MR)4

∫ 1

0

|E∗(α)|2 dα+ (MR)2I2, (4.37)

where I2 denotes the number of integral solutions of the equation

h3
1(m6

1 − n6
1)− h3

2(m6
2 − n6

2) = (g3
1 − g3

2)(m6
3 − n6

3), (4.38)

with g, h, m, n satisfying (4.36) and

1 ≤ g2 < g1 ≤ H, M < n3 < m3 ≤MR.

Given a fixed choice of h1, h2,m1,m2, n1, n2 satisfying (4.36), write

l = h3
1(m6

1 − n6
1)− h3

2(m6
2 − n6

2).

Then, for any solution g1, g2,m3, n3 of (4.38) counted by I2, one has l 6= 0, and
moreover the integers g1 − g2, g2

1 + g1g2 + g2
2 and m6

3 − n6
3 are each divisors

of l. On recalling our opening discussion again, therefore, we find that I2 �
P εH2(MR)4. The estimate (4.34) when j = 2 is therefore confirmed on recalling
(4.37), together with the estimate (4.34) in the case j = 1. This completes the
proof of the lemma.

Lemma 4.6. One has∫ 1

0

|F1(α)2E∗(3a2α)4| dα� P εH5(MR)11. (4.39)
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Proof. Note first that by Cauchy’s inequality, one has

|F1(α)|2 � H(MR)2
∑
h≤H

∣∣∣ ∑
y≤2AN

e(αhy2)
∣∣∣2.

Thus, on considering the underlying diophantine equations, one has the upper
bound ∫ 1

0

|F1(α)2E∗(3a2α)4| dα� H(MR)2J, (4.40)

where J denotes the number of integral solutions of the equation

h(y2
1−y2

2) = 3a2(h3
1(m6

1−n6
1)+h3

2(m6
2−n6

2)−h3
3(m6

3−n6
3)−h3

4(m6
4−n6

4)), (4.41)

with

1 ≤ h ≤ H, 1 ≤ hi ≤ H, M < ni < mi ≤MR (1 ≤ i ≤ 4),

1 ≤ y1 ≤ 2AN, 1 ≤ y2 ≤ 2AN.

Let J1 be the number of solutions of (4.41) counted by J in which y1 = y2, and
let J2 be the corresponding number of solutions with y1 6= y2. Then

J = J1 + J2. (4.42)

On considering the underlying diophantine equations, one has

J1 � HN

∫ 1

0

|E∗(3a2α)|4 dα,

whence by making an obvious change of variable, it follows from Lemma 4.5
that

J1 � N1+εH3(MR)6 � P εH4(MR)9. (4.43)

Consider next a solution h, y, h, m, n of the equation (4.41) counted by J2.
Since now y1 6= y2, the integer on the right hand side of (4.41) must be non-
zero. Fix any one of the O(H4(MR)8) possible choices of h, m, n with the
latter property. Then h, y1−y2 and y1 +y2 are each divisors of the fixed integer
on the right hand side of (4.41), whence an elementary estimate for the divisor
function shows that

J2 � N εH4(MR)8. (4.44)

On combining (4.40) and (4.42)–(4.44), the conclusion (4.39) is immediate.

Before launching our first major offensive on the minor arcs, we record here
the estimate ∫ 1

0

|t(α;Q1)|5 dα� Q
44
17−δ
1 , (4.45)

which follows from the proof of Theorem 1.2 of Wooley [22] with δ = 10−4.
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Lemma 4.7. Suppose that 0 < θ ≤ 1
6 . Then∫

p

|F1(α)G̃1(Aα)t(Aα;Q1)2| dα� N
1
2 +εMR2H

7
5Q

88
85−

2
5 δ

1 (cardZ3(N))
1
2 .

Proof. Write

J2 =

∫ 1

0

|F1(α)| 15 |G̃1(Aα)t(Aα;Q1)2| dα (4.46)

and

J3 =

∫ 1

0

|F1(α)| 15 |E∗(3a2α)| 25 |G̃1(Aα)t(Aα;Q1)2| dα. (4.47)

Then by (4.30) and Lemma 4.4, one has for each α ∈ p the estimate

|F1(α)| � N ε(NH)1/2|E(α)|1/2,

whence by (4.33) one finds that for α ∈ p one has

|F1(α)| 45 � N ε(NH)
2
5 ((HMR)

2
5 + |E∗(3a2α)| 25 ).

Thus we obtain∫
p

|F1(α)G̃1(Aα)t(Aα;Q1)2| dα� N ε(NH)
2
5 ((HMR)

2
5J2 + J3). (4.48)

We first estimate J2, noting that by Hölder’s inequality together with a
change of variable, one has from (4.46) the bound

J2 �
(∫ 1

0

|F1(α)|2 dα
) 1

10
(∫ 1

0

|G̃1(α)|2 dα
) 1

2
(∫ 1

0

|t(α;Q1)|5 dα
) 2

5

.

It therefore follows from Lemma 4.3 and (4.45) that

J2 � N ε(NMHR)
1
10 (MRHcardZ3(N))

1
2 (Q

44
17−δ
1 )

2
5 . (4.49)

Meanwhile, on applying Hölder’s inequality to (4.47), we find that

J3 �
(∫ 1

0

|F1(α)E∗(3a2α)2|2 dα
) 1

10
(∫ 1

0

|G̃1(α)|2 dα
) 1

2
(∫ 1

0

|t(α;Q1)|5 dα
) 2

5

.

By making use of Lemmata 4.3 and 4.6, therefore, we deduce from (4.45) that

J3 � N ε(H5(MR)11)
1
10 (MRHcardZ3(N))

1
2 (Q

44
17−δ
1 )

2
5 . (4.50)

On recalling (4.48), we conclude from (4.49) and (4.50) that∫
p

|F1(α)G̃1(Aα)t(Aα;Q1)2| dα

� N
1
2 +εMRH

7
5Q

88
85−

2
5 δ

1 (cardZ3(N))
1
2 (1 + ω),

26



where
ω � (MR)

3
5N−

1
10 .

Consequently our hypothesis that θ ≤ 1
6 ensures that ω � R

3
5 , and the conclu-

sion of the lemma follows immediately.

A further mean value estimate is necessary before dispatching the contribu-
tion of the major arcs P.

Lemma 4.8. One has∫
P

D(α)|t(Aα;Q1)|2 dα� N3+εHQ−2
1 .

Proof. It follows from Lemma 4.4 that∫
P

D(α)|t(Aα;Q1)|2 dα� N2+εH

∫
P

D∗(α)Ψ(α) dα,

where for α ∈ P(q, a) ⊂ P one has

D∗(α) = q−1(1 +Q3
1|α− a/q|)−1,

and where we define

Ψ(α) = |t(Aα;Q1)|2 =
∑

|h|≤2AQ3
1

ψhe(αh).

Here ψh denotes the number of solutions of the equation h = A(x3
1 − x3

2) with
x1, x2 ∈ A(Q1, R). As an immediate consequence of Lemma 2 of Brüdern [1],
we have∫

P

D∗(α)|t(Aα;Q1)|2 dα� N εQ−3
1

(
Pψ0 +

∑
h6=0

|ψh|
)
� N εQ−3

1 (PQ1 +Q2
1),

and the conclusion of the lemma follows immediately.

Lemma 4.9. Suppose that 0 < θ ≤ 1
6 . Then∫ 1

0

|F1(α)G̃1(Aα)t(Aα;Q1)2| dα

� N3+εH2M2R2Q−2
1 +N

1
2 +εMR2H

7
5Q

88
85−

2
5 δ

1 (cardZ3(N))
1
2 .

Proof. Note that [0, 1] is the disjoint union of P and p. Therefore, if one has∫
p

|F1(α)G̃1(Aα)t(Aα;Q1)2| dα ≥
∫
P

|F1(α)G̃1(Aα)t(Aα;Q1)2| dα

27



then ∫ 1

0

|F1(α)G̃1(Aα)t(Aα;Q1)2| dα ≤ 2

∫
p

|F1(α)G̃1(Aα)t(Aα;Q1)2| dα,

and the conclusion of the lemma is immediate from Lemma 4.7. In the contrary
case, the same argument, followed by an application of Schwarz’s inequality,
yields∫ 1

0

|F1(α)G̃1(Aα)t(Aα;Q1)2| dα ≤ 2

∫
P

|F1(α)G̃1(Aα)t(Aα;Q1)2| dα

≤ 2(K1K2)
1
2 , (4.51)

where

K1 =

∫
P

|F1(α)t(Aα;Q1)|2 dα (4.52)

and

K2 =

∫ 1

0

|G̃1(Aα)t(Aα,Q1)|2 dα. (4.53)

Observe first that on considering the underlying diophantine equations, one
may apply the argument leading from (4.23) to the conclusion of Lemma 4.2 in
order to establish that

K2 ≤
∫ 1

0

|F1(α)G̃1(Aα)t(Aα;Q1)2| dα.

Thus it follows from (4.51)–(4.53) that∫ 1

0

|F1(α)G̃1(Aα)t(Aα;Q1)2| dα�
∫
P

|F1(α)t(Aα;Q1)|2 dα. (4.54)

Next, on making use of (4.30) together with a trivial estimate for E(α), we
obtain ∫

P

|F1(α)t(Aα;Q1)|2 dα ≤ H(MR)2

∫
P

D(α)|t(Aα;Q1)|2 dα,

whence by Lemma 4.8 we may conclude that∫
P

|F1(α)t(Aα;Q1)|2 dα� N3+εH2(MR)2Q−2
1 . (4.55)

The proof of the lemma is completed by substituting (4.55) into (4.54).

Having now vanquished the difficult aspects of estimating the central auxil-
iary mean value, we set up camp by collecting together our conclusions in the
form of the following lemma.
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Lemma 4.10. Suppose that cardZ3(N) > N78/85. Then, with τ = 10−6,
one has ∫ 1

0

|K3(α)2t(α;P )4| dα� N
5216
1865−τ (cardZ3(N))

169
373 .

Proof. We choose θ by taking M = P θ and solving the equation

M = P
743
1865−2τ (cardZ3(N))−

102
373 .

On making use of our hypothesis that cardZ3(N) > N78/85, we find that P 1/9 <
M < P 1/6, and hence that the estimate of Lemma 4.9 holds. Moreover, our
hypothesis on the cardinality of Z3(N) also ensures that the estimate of Lemma
4.9 may be simplified to∫ 1

0

|F1(α)G̃1(Aα)t(Aα;Q1)2| dα� N
1
2 +εMR2H

7
5Q

88
85−

2
5 δ

1 (cardZ3(N))
1
2 .

(4.56)
On recalling the estimate∫ 1

0

|t(α;Q1)|6 dα� Q
13
4 −4δ

1

from Theorem 1.2 of Wooley [22], we deduce from Lemma 4.2 and (4.56) that∫ 1

0

|G1(α)t(α;Q1)4| dα� N
1
4 +εM

1
2RH

7
10Q

1457
680 −2δ

1 (cardZ3(N))
1
4 .

On inserting the latter estimate into Lemma 4.1, and taking account of our
choice of M , a modicum of computation will yield the conclusion of the lemma
whenever η is sufficiently small.

Having achieved the modest victory recorded above, we manoeuvre our forces
to outflank the obstacles on the major arcs by means of a pruning argument.
Given the work of the previous section, this turns out to be routine. We start
once again with the lower bound (2.28), and investigate the contribution to the
left hand side of (2.28) arising from the set n∩M. Recalling the notation of §3,
we apply Lemmata 7.2 and 8.5 of Vaughan and Wooley [18] to conclude that
for X ≤ P 3/4 one has

sup
α∈K(X)

|t(α)| � PX−1/8.

Then it follows from Lemma 3.3 that for X ≤ P 3/4 one has∫
K(X)

|F1(α)t(α)2K3(α)| dα � P 2X−1/4K3(0)

∫
M(2X)

|F1(α)| dα

� Q3Y X−1/5(log Y )−1cardZ3(N).
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On summing over the contributions of the sets K(2lL) with l ≥ 0 and 2lL ≤ P 3
4 ,

we obtain the upper bound∫
n∩M

|F1(α)t(α)2K3(α)|dα� Q3Y L−1/5(log Y )−1cardZ3(N).

On recalling (2.28), we may conclude thus far that∫
m

|F(α)t(α)2K3(α)| dα+

∫
M

|(F(α)−F1(α))t(α)2K3(α)| dα

� Q3Y (log Y )−1cardZ3(N). (4.57)

On applying Schwarz’s inequality next to (4.57), and making use of Lemmata
3.2 and 4.10, we find that whenever cardZ3(N) > N78/85, one has the estimate

Q3Y (log Y )−1cardZ3(N) �
(∫

m

|F(α)|2 dα+

∫
M

|F(α)−F1(α)|2 dα
) 1

2

×
(∫ 1

0

|K3(α)2t(α;P )4| dα
) 1

2

� (Y 2Q6P−19/14)
1
2 (N

5216
1865−τ )

1
2 (cardZ3(N))

169
746 .

It follows that
cardZ3(N)� N1− 2801

40390 ,

and the conclusion of Theorem 1.2 follows from a trivial computation.
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